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Abstract

We consider differential equation approximations for continuous time Markov chains

with asymptotically density dependent transition rates. Based on some operator semi-

group techniques, we show that the second order moment of the Markov process can be

approximated uniformly by the solution of an appropriately chosen mean-field equa-

tion. The convergence rate is shown to be given by O(n−1) with n being the size of

the state space.
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1 Introduction

Differential equation (mean-field) approximations for stochastic processes are receiving

a growing research attention in a variety of fields, e.g., disease dissemination, statistical

physics and natural evolution, see [1]. These approximations often provide fine insight

on the behavior of the stochastic system since deterministic processes can usually be

addressed more easily. From a mathematical point of view many stochastic systems can

be translated to Markovian random processes, like continuous time Markov chains [2]. A

continuous time Markov chain with finite state space {0, 1, · · · , n} (n ∈ N), for example,

is described by its Kolmogorov equations

ṗk(t) = bk−1pk−1(t) − (bk + dk)pk(t) + dk+1pk+1(t), k = 0, 1, · · · , n, (1)
1Department of Mathematics, Tongji University, Shanghai 200092, China; Einstein Institute of Math-

ematics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Email: shyl@tongji.edu.cn

1



where pk(t) represents the probability that the process is in state k at time t. Alternatively,

with the aid of the infinitesimal generator AT
n with

An =



−b0 − d0 b0 0 · · · 0 0

d1 −b1 − d1 b1 · · · 0 0

0 d2 −b2 − d2
. . .

...
...

...
... d3

. . . bn−2 0
...

...
...

. . . −bn−1 − dn−1 bn−1

0 0 0 · · · dn −bn − dn


,

and p(t) = (p0(t), p1(t), · · · , pn(t))T , the Kolmogorov equations (1) are equivalent to ṗ(t) =

AT
np(t). The particular tri-diagonal structure of An corresponds to a birth-death process

with transition rates [2]

k −→ k + 1 at rate bk,

k −→ k − 1 at rate dk,

with bn = d0 = 0.

It is the goal of this paper to prove the convergence of second order moment of the

Markov chain (1) to the solution of a mean-field differential equation as n tends to infinity.

From the differential equation point of view, the Markovian stochastic system is governed

by its Kolmogorov equations, which are linear ordinary differential equations describing the

time evolution of the system. By using Trotter type approximation theorems, Kurtz [3, 4]

showed that the pure jump density dependent Markov chain converges in probability to

the solution of a mean-field model. McVinish and Pollett [5] showed the weak convergence

of a density dependent Markov chain with individual variation to a deterministic process

by constructing measure-valued Markov chains. Based on primary operator semigroup

approaches [12], the expected value of an asymptotically density dependent Markov chain

is shown to converge to the solution of a mean-field equation by Bátkai et al. in [6]. For

more approximation techniques and applications, we refer the reader to [7, 8, 9, 10] and

references therein.

Let bk = Bn(k) and dk = Dn(k), the Markov chain (1) is said to be density dependent

[4] if there exist b(x), d(x) ∈ C[0, 1] for all x ∈ [0, 1] and n ∈ N, b(x) = Bn(nx)/n and

d(x) = Dn(nx)/n hold. The asymptotical density dependence [6, 11] means that

b(x) = lim
n→∞

Bn(nx)
n

and d(x) = lim
n→∞

Dn(nx)
n
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hold for all x ∈ [0, 1]. Given n ∈ N, let Xn(t) be a Markov chain corresponding to (1)

taking values in S = {0, 1/n, 2/n, · · · , 1}. Then we have pk(t) = P (Xn(t) = k/n). Our

main result goes as follows.

Theorem 1. Let

y(t) =
n∑

k=0

k2

n2
pk(t) (2)

be the second order moment of the Markov process Xn(t). Suppose that x(t) is the solution

of the initial value problem ẋ(t) = 2(b(x) − d(x)) for t ≥ 0,

x(0) = y(0),
(3)

where b(x), d(x) ∈ C2[0, 1] satisfying∣∣∣∣b(x) − Bn(αnx)
αn

∣∣∣∣ = O

(
1
n

)
and

∣∣∣∣d(x) − Dn(αnx)
αn

∣∣∣∣ = O

(
1
n

)
(4)

for any αn ≤ n2 and x ∈ [0, 1] with αnx ∈ S. Then for any t0 > 0, there exists a constant

C such that

|x(t) − y(t)| ≤ C

n

for all t ∈ [0, t0].

The expected value of the Markov chain Xn(t) is given by z(t) =
∑n

k=0(k/n)pk(t).

Bátkai et al. [6, Theorem 1] showed that z(t) can be approximated, under the same

condition of Theorem 1, by the solution of an initial value problem similar (differ by

a factor of two) to (3). Our methodology is to first introduce a new Markov chain X ′
n

which has different state space from that of Xn but share essentially the same infinitesimal

generator with it. Same operator semigroup techniques used in [6] are then applied to X ′
n,

which in turn gives the second order moment approximation of the original chain Xn.

Our investigation of convergence of the second order moment instead of weak/stochastic

convergence is motivated by the following two considerations. Firstly, no sophisticated

probabilistic techniques are needed, which yields a less technical proof and a more trans-

parent demonstration of the result. Secondly, the convergence of second order moment can

be readily combined with that of the first order moment ([6, Theorem 1]) to test the good-

ness (via deviation) of the approximation effectively. As is known, the weak/stochastic

convergence is rarely examined in practice.

The rest of the paper is organized as follows. In Section 2, we derive the mean-field

equation in (3). In Section 3, we present the proof of Theorem 1.
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2 Derivation of mean-field equation

In this section, we derive the approximating differential equation in (3) for the second

order moment of Markov chain Xn(t). Following Bátkai et al. [6], by using (2) and the

Kolmogorov equations (1), we obtain

ẏ(t) =
n∑

k=0

k2

n2
ṗk(t)

=
n∑

k=0

(
(k + 1)2

n2
bk − k2

n2
(bk + dk) +

(k − 1)2

n2
dk

)
pk(t)

= 2
n∑

k=0

k(bk − dk)
n2

pk(t) +
n∑

k=0

(
bk + dk

n2

)
pk(t), (5)

where we used the convention that d0 = bn = 0.

It follows from (4) and the continuity of b(x), d(x) that bk/n and dk/n are bounded.

Hence, the last term in (5) approaches 0 as n → ∞. We have

ẏ(t) ≈ 2
n∑

k=0

k(bk − dk)
n2

pk(t)

= 2
n∑

k=0

(
kBn(n2 k

n2 )
n2

−
kDn(n2 k

n2 )
n2

)
pk(t). (6)

Again applying the asymptotic density dependence (4), the right-hand side of (6) can be

approximated by

2
n∑

k=0

(
kb

(
k

n2

)
− kd

(
k

n2

))
pk(t).

In view of the Taylor formula for the functions b(·) and d(·), higher-order moments for the

Markov process Xn will be needed. To obtain a self-contained equation at the level of the

second order moment, we resort to the following closure

n∑
k=0

(
kb

(
k

n2

)
− kd

(
k

n2

))
pk(t) ≈ b

(
n∑

k=0

k2

n2
pk(t)

)
− d

(
n∑

k=0

k2

n2
pk(t)

)
.

Recall the definition (2) and we finally obtain the following mean-field approximation

ẏ(t) ≈ 2(b(y) − d(y)).

For other moment closure techniques used in differential equation approximations, we refer

the interested reader to [1, Sec. IV.D] and references therein.
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3 Proof of Theorem 1

In this section, we will prove Theorem 1 employing operator semigroup approaches [6, 12].

To start with, we define a new continuous time Markov chain X ′
n(t) taking values in

S′ = {0, (1/n)2, (2/n)2, · · · , 1}. Its infinitesimal generator is the same as AT
n defined above.

We have pk(t) = P (X ′
n(t) = (k/n)2) and the transition probabilities for the Markov chain

X ′
n are represented by

pj,k(t) = P

(
X ′

n(t) =
k2

n2

∣∣∣∣X ′
n(0) =

j2

n2

)
.

Therefore, we obtain pk(t) =
∑n

j=0 pj,k(t)pj(0) and the matrix semigroup (Tn(t))t≥0 de-

fined by

Tn(t) := (pj,k(t)) = etAn

is a uniformly continuous operator semigroup on Rn+1 with the following identification

Rn+1 =
{
f : f maps {0, (1/n)2, (2/n)2, · · · , 1} to R

}
. As is known, An is the generator of

semigroup (Tn(t))t≥0, and

(Tn(t)f)
(

j2

n2

)
=

n∑
k=0

f

(
k2

n2

)
pj,k(t). (7)

Let ϕ(t, x(0)) be the solution of the Cauchy problem (3). The operator semigroup

(T (t))t≥0 defined by

(T (t)f)(x(0)) := f(ϕ(t, x(0))) (8)

for f ∈ C[0, 1] is strongly continuous on C[0, 1] [12, pp. 91-92]. Its generator (A,D(A))

with domain D(A) = C1[0, 1] satisfies

(Af)(x(0)) = 2(b(x(0)) − d(x(0)))f ′(x(0)). (9)

To approximate the semigroup (Tn(t))t≥0 using the semigroup (T (t))t≥0, the following

projection-like linear operators between the approximation spaces Rn+1 and the space

C1[0, 1] are necessitated. We choose operators [13]

Jn : Rn+1 → C1[0, 1], Jn(f) := g,

and

Pn : C1[0, 1] → Rn+1, Pn(g) := f,
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with f((k/n)2) = g((k/n)2) for k = 0, 1, · · · , n, such that ‖Jn‖ ≤ 1, ‖Pn‖ ≤ 1, PnJn =

idRn+1 for n ∈ N, and limn→∞ JnPnf = f for f ∈ C1[0, 1].

The following lemma is crucial to the proof of Theorem 1.

Lemma 1. Suppose that the conditions in Theorem 1 hold. For f ∈ C2[0, 1] and t0 > 0,

there exists a constant C = C(f, t0) > 0 such that

‖(PnT (t) − Tn(t)Pn)f‖ ≤ C

n

for all t ∈ [0, t0].

Proof. The families T̃n(t) := JnTn(t)Pn, t ≥ 0, define a strongly continuous semigroup

on C1[0, 1] with generator Ãn given by Ãn = JnAnPn. Using the variation of parameters

formula [12, p. 161], we obtain

(PnT (t) − Tn(t)Pn)f = Pn(T (t)f − T̃n(t)f)

=
∫ t

0
PnT̃n(t − s)(A − Ãn)T (s)fds

=
∫ t

0
Tn(t − s)(PnA − AnPn)T (s)fds, (10)

for any f ∈ C2[0, 1].

In the following, we estimate the discrepancy PnA−AnPn. It follows from (9) and the

definition of An that

(PnAf)
(

k2

n2

)
= 2

(
b

(
k2

n2

)
− d

(
k2

n2

))
f ′

(
k2

n2

)
and

(AnPnf)
(

k2

n2

)
=

2kbk

n2
·
f( (k+1)2

n2 ) − f( k2

n2 )
2k
n2

− 2kdk

n2
·
f( k2

n2 ) − f( (k−1)2

n2 )
2k
n2

for f ∈ C2[0, 1] and k = 0, 1, · · · , n. Hence,

(PnAf)
(

k2

n2

)
− (AnPnf)

(
k2

n2

)
= 2

(
b

(
k2

n2

)
− kbk

n2
− d

(
k2

n2

)
+

kdk

n2

)
f ′

(
k2

n2

)
+

2kbk

n2

(
f ′

(
k2

n2

)
−

f( (k+1)2

n2 ) − f( k2

n2 )
2k
n2

)

+
2kdk

n2

(
f( k2

n2 ) − f( (k−1)2

n2 )
2k
n2

− f ′
(

k2

n2

))
. (11)

From (4) we have for all k = 0, 1, · · · , n,∣∣∣∣b (
k2

n2

)
− kbk

n2

∣∣∣∣ =

∣∣∣∣∣b
(

k2

n2

)
−

Bn(n2

k
k2

n2 )
n2

k

∣∣∣∣∣ ≤ L

n
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and similarly ∣∣∣∣d (
k2

n2

)
− kdk

n2

∣∣∣∣ =

∣∣∣∣∣d
(

k2

n2

)
−

Dn(n2

k
k2

n2 )
n2

k

∣∣∣∣∣ ≤ L

n
,

for some L > 0. Moreover, kbk/n2 ≤ C and kdk/n2 ≤ C for some constant C > 0 since

the functions b(·), d(·) ∈ C2[0, 1]. Applying Taylor’s formula for f ∈ C2[0, 1], we have for

every k = 0, 1, · · · , n, there exists ηk ∈ ((k/n)2, ((k + 1)/n)2) such that∣∣∣∣∣f ′
(

k2

n2

)
−

f( (k+1)2

n2 ) − f( k2

n2 )
2k
n2

∣∣∣∣∣ ≤
∣∣∣∣(2k + 1)f ′′(ηk)

2n2

∣∣∣∣ ≤ ‖f ′′‖
n − 1

holds. Since f ′((k/n)2) ≤ ‖f ′‖, we have from (11) that

‖(PnA − AnPn)f‖ ≤ K‖f ′′‖
n

+
L‖f ′‖

n
(12)

for some constant K > 0 and all n large enough.

Inserting (12) into (10), and recall that T (t) maps C2[0, 1] into itself (by the continuous

dependence theorem), we can derive that for f ∈ C2[0, 1] there exist two constant K̂, L̂ > 0

such that

‖(PnT (t) − Tn(t)Pn)f‖ ≤
∫ t

0

K̂‖(T (s)f)′′‖
n

+
L̂‖(T (s)f)′‖

n
ds.

Since b(·), d(·) ∈ C2[0, 1], we obtain ϕ(t, ·) ∈ C2[0, 1] by continuous dependence. Conse-

quently, for each s ∈ [0, t], there exist M1,M2 > 0 such that

‖(T (s)f)′‖ = ‖(f(ϕ(s, ·)))′‖ = ‖f ′(ϕ(s, ·))ϕ′(s, ·)‖ ≤ M1‖f‖H2

and

‖(T (s)f)′′‖ = ‖f ′′(ϕ(s, ·))(ϕ′(s, ·))2 + f ′(ϕ(s, ·))ϕ′′(s, ·)‖ ≤ M2‖f‖H2 ,

where ‖f‖H2 < ∞ is the Sobolev space norm. This readily concludes the proof of Lemma

1. 2

Now, take f = id : [0, 1] → [0, 1] in Lemma 1. We obtain that there exists a constant

C > 0 such that

‖(PnT (t) − Tn(t)Pn)id‖ ≤ C

n
(13)
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for all t ∈ [0, t0]. From (2) and (7) it follows that

y(t) =
n∑

k=0

k2

n2
pk(t)

=
n∑

k=0

k2

n2

n∑
j=0

pj,k(t)pj(0)

=
n∑

j=0

pj(0)
n∑

k=0

id
(

k2

n2

)
pj,k(t)

=
n∑

j=0

pj(0)(Tn(t)Pnid)
(

j2

n2

)
.

It suffices to examine the initial condition p(0) with the mth component being 1 and the

other components being 0. Accordingly, y(0) = x(0) = (m/n)2 and x(t) = ϕ(t, (m/n)2) =

(PnT (t)id)((m/n)2). Thus, by using (13) we obtain

|x(t) − y(t)| =
∣∣∣∣(PnT (t)id)

(
m2

n2

)
− (Tn(t)Pnid)

(
m2

n2

)∣∣∣∣ ≤ C

n
.

This proves Theorem 1.
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